Synberc has ended. EBRC is a new non-profit organization leading the field of engineering biology. Learn more
Synthetic Biology Engineering Research Center

Search form

Synthetic biologists: How we organize

Author: 
Kevin Costa

There seems to be a lot of commotion in the synthetic biology community these days about how to organize our research community at the national level. This is definitely true within Synberc, where our Sustainability Project has been critically assessing what is needed to responsibly advance the field.

For all of the hullabaloo, there’s very little actual organizing going on at the national level. The field has defaulted into a “communities of practice” mode, where smaller groups of practitioners of a particular interest or expertise naturally come together to share information and experience, and have an opportunity to develop themselves personally and professionally, or to advance a particular agenda.

Here are some specific examples of how the synthetic biology community has self-organized:

  • iGEM - The “world’s premiere synbio competition” but also an important testbed for educating synthetic biologists, creating a shared database of parts, and for learning how to screen projects for safety/security concerns. Probably the most successful effort to organize the synbio community not just in the US but worldwide.
  • SynBioBeta - A recent but highly successful effort led by one organizing dynamo (John Cumbers, Santa Clara University/NASA Ames) that is bringing together small start-up companies and other entrepreneurially minded interests to foster the “synthetic biology start-up ecosystem.”
  • BioBricks Foundation - An early pioneer in trying to bring together the synthetic biology community in more or less the mode of a professional society. BBF runs the SBX.0 International Conference Series, which is the synbio community’s primary conference. BBF has also led a call for technical comments that led to the development of a BioBricks Public Agreement (BPA) to enable easier sharing of biological parts.
  • The DIYbio 'movement' is a good example of how citizen scientists and enthusiasts are organizing themselves at the very local levels -- the DIYbio community has not yet developed a strong guild at the national level, but the potential appears to be there.
  • Synberc - The US’s first and largest single effort to bring together leading researchers and universities to establish the scientific and engineering foundations of synthetic biology. It too was generated at the grassroots level by a group of like-minded researchers, rather than by a national fiat.

One more important way in which the community is organizing itself: A crop of synthetic biology centers has blossomed at individual universities:

The formation of these centers suggest that the community is hungry for organizational entities that last over many years and help researchers from diverse backgrounds come together to pursue shared research aims.

Zooming back out to the national level, the basis set of leaders in synthetic biology are often recombined in different ways to address different problems in different contexts. For example, many of the experts involved in a NAS study on technical roadmaps are likely to be seen at another study on the ethical, legal and social ramifications of synthetic biology. The basis set of leaders is slowing growing outward as the field identifies new opportunities/challenges and becomes aware of and comfortable with others from different research communities. As with any highly multidisciplinary endeavor, the challenge for our community is to enable and encourage diverse practitioners with shared goals to come together to solve problems we cannot solve independently.

In the UK, the scientific community has had better success in organizing itself at the national level, especially through the UK Roadmap process. One might argue about the practical value of the technology and society roadmap that such efforts produce, but the roadmap itself is probably not as important as bringing together new assemblages of scientists, policymakers, funders, and other stakeholders to think about the opportunities and challenges of synthetic biology from many perspectives. The report accompanying the roadmap has a number of important insights (IMHO) and did seem to result in the national synergy in synbio that the UK is now experiencing.

Given the current status of organizing in the US and the need to develop a more coordinated framework, one might consider something like a spoke-and-hub model for getting there. In a sense, this is what Synberc is. The universities are bound together loosely by Synberc. The colleges and their investigators are free to pursue independent projects and even engage in cooperative competition, yet they can leverage Synberc infrastructure for thinking about "problems of the commons". These include strategic roadmapping, responsible innovation, education and workforce development, industry liaison (e.g., creating a one-stop shop for industry members to interact with leaders of the field), addressing intellectual property concerns, metrology and standards, communications & advocacy (enabling the community to speak with a common voice), and simply building community through regular symposia and workshops. Given the proliferation of “communities of practice” across the U.S. in synthetic biology, an elastic organization may be the only kind that can accommodate such a wide range of researchers and organizations.